Monte Carlo calculation of specific absorbed fractions: variance reduction techniques.

نویسندگان

  • G Díaz-Londoño
  • S García-Pareja
  • F Salvat
  • A M Lallena
چکیده

The purpose of the present work is to calculate specific absorbed fractions using variance reduction techniques and assess the effectiveness of these techniques in improving the efficiency (i.e. reducing the statistical uncertainties) of simulation results in cases where the distance between the source and the target organs is large and/or the target organ is small. The variance reduction techniques of interaction forcing and an ant colony algorithm, which drives the application of splitting and Russian roulette, were applied in Monte Carlo calculations performed with the code penelope for photons with energies from 30 keV to 2 MeV. In the simulations we used a mathematical phantom derived from the well-known MIRD-type adult phantom. The thyroid gland was assumed to be the source organ and urinary bladder, testicles, uterus and ovaries were considered as target organs. Simulations were performed, for each target organ and for photons with different energies, using these variance reduction techniques, all run on the same processor and during a CPU time of 1.5 · 10(5) s. For energies above 100 keV both interaction forcing and the ant colony method allowed reaching relative uncertainties of the average absorbed dose in the target organs below 4% in all studied cases. When these two techniques were used together, the uncertainty was further reduced, by a factor of 0.5 or less. For photons with energies below 100 keV, an adapted initialization of the ant colony algorithm was required. By using interaction forcing and the ant colony algorithm, realistic values of the specific absorbed fractions can be obtained with relative uncertainties small enough to permit discriminating among simulations performed with different Monte Carlo codes and phantoms. The methodology described in the present work can be employed to calculate specific absorbed fractions for arbitrary arrangements, i.e. energy spectrum of primary radiation, phantom model and source and target organs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of absorbed ratio in I-131 dosimetry using MCNP-4A [Persian]

  Determination of the total body absorbed dose consists of two parts: Beta radiation absorbed dose and gamma radiation absorbed dose. The first part is generally determined by clinical data, while the second part has a parameter called absorbed ratio and is determined by computational methods. The Monte-Carlo computational methods have been shown to be the most suita...

متن کامل

Evaluation of Electron Specific Absorbed Fractions in Organs of Digimouse Voxel Phantom Using Monte Carlo Simulation Code FLUKA

Background: For preclinical evaluations of radiopharmaceuticals, most studies are carried out on mice. Values of electron specific absorbed fractions (SAF) have had vital role in the assessment of absorbed dose. In past studies, electron specific absorbed fractions were given for limited source target pairs using older reports of human organ compositions.Objective: Electron specific absorbed fr...

متن کامل

An Efficiency Studying of an Ion Chamber Simulation Using Vriance Reduction Techniques with EGSnrc

Background: Radiotherapy is an important technique of cancer treatment using ionizing radiation. The determination of total dose in reference conditions is an important contribution to uncertainty that could achieve 2%. The source of this uncertainty comes from cavity theory that relates the in-air cavity dose and the dose to water. These correction factors are determined from Monte Carlo calcu...

متن کامل

Estimation of Photon Specific Absorbed Fractions in Digimouse Voxel Phantom using Monte Carlo Simulation Code FLUKA

Background: Most preclinical studies are carried out on mice. For internal dose assessment of a mouse, specific absorbed fraction (SAF) values play an important role. In most studies, SAF values are estimated using older standard human organ compositions and values for limited source target pairs.Objective: SAF values for monoenergetic photons of energies 15, 50, 100, 500, 1000 and 4000 keV...

متن کامل

InRaDoS: An internal radiation dosimetry computer program

Introduction: Internal radiation dosimetry is important from a radiation protection point of view and can help to optimize the radiation dose delivered to the workers, public, and patients. It has a rather simple protocol but needs a large amount of data. Therefore, it is difficult to do on a routine basis. The use of computer programs makes internal radiation dosimetry simpler...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physics in medicine and biology

دوره 60 7  شماره 

صفحات  -

تاریخ انتشار 2015